SUPERALKALI MOLECULES CONTAINING HALOGENOIDS

Iwona Sieradzan, Marzena Marchaj and Iwona Anusiewicz

Department of Chemistry, University of Gdańsk, Sobieskiego 18, 80–952 Gdańsk, Poland

Abstract

The structure and properties of hypermetalated Li₂X, Na₂X (X=SCN, OCN, and CN), Na₄OCN molecules and their corresponding daughter cations were investigated using *ab initio* methods at the CCSD(T)/6-311+G(3df)//MP2/6-311+G(d) level of theory. The vertical ionization potentials of the Li₂X, Na₂X and Na₄OCN radicals were calculated at the outer valence Green function level (OVGF) with the 6-311+G(3df) basis set. It was found that all Na₂X molecules studied possess the vertical ionization potentials (VIP) that are smaller than the IP of the Na atom (5.14 eV) and thus may be termed *superalkali molecules*, whereas the Li₂X radicals exhibit slightly larger IPs. The VIP predicted for Na₄OCN superalkali molecules (4.117-4.640 eV) are substantially lower than those estimated for Na₂OCN species (4.747-5.072 eV). The smallest VIP of 4.478 eV was calculated for the global minimum of the Na₄OCN structure. The IP dependence on the structure and singly occupied molecular orbital (SOMO) character is also discussed.